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Abstract

We study a natural Dirac operator on a Lagrangian submanifold of a Kähler manifold. We first
show that its square coincides with the Hodge–de Rham Laplacian provided the complex structure
identifies the spin structures of the tangent and normal bundles of the submanifold. We then give
extrinsic estimates for the eigenvalues of that operator and discuss some examples.
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1. Introduction

The main object of this paper is to initiate the study of the properties of a Dirac operator
on Lagrangian submanifolds of Kähler manifolds.

Spin geometry has revealed as a powerful tool in intrinsic geometry for a long time (see
e.g.[18]). It is however a recent and striking fact that spinors play a role in extrinsic geometry
as well. Initiated by Witten[26], the use of Dirac operators on submanifolds has only been
developed over the last years, especially about the following question: how can one relate
analytical properties of some Dirac operators on a submanifold with extrinsic geometric
quantities? For submanifolds of real space-forms, on which there exists particular spinor
fields (mainly parallel spinor fields, up to a conformal change of the metric), a beautiful
series of results has already appeared (see[10] for references). However, answering that
question in presence of further geometric structures seems to have been little considered.
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We propose in this paper to begin with the study of (immersed) submanifolds ofKählerian
manifolds. The presence of a complex structure on the ambient manifold gives rise to a
rich variety of submanifolds (totally real, Kählerian, real hypersurface, etc.). That is why
we shall restrict our attention to a particular class of submanifolds, namelyLagrangian
submanifolds. A submanifold of a Kählerian manifold is Lagrangian if and only if the
(ambient) complex structure maps its tangent bundleonto its normal bundle. Like every
submanifold, a Lagrangian submanifold carries atwisted-Dirac operator. We shall first
prove that, if furthermore the complex structure identifies the spin structures of the tangent
and normal bundles, then this twisted-Dirac operator identifies with theEuleroperator. This
requires adapting some technical algebraic Lemmas (compare with[2,12]), which we shall
therefore recall in detail in the first part. Coming back to the original question, we then prove
new eigenvalue estimates for the above twisted-Dirac operator, and show their sharpness
through examples. The results obtained show analogies with[6,24].

2. Spin structures and Dirac operators on a Lagrangian submanifold

We begin with collecting basic facts about spin structures on Lagrangian submanifolds of
Kählerian manifolds (see also[5,7,18]for general spin geometry). We first describe the nec-
essary algebraic material, then transport it to bundles with the help of a group-equivariance
condition.

2.1. Clifford algebras and spinors

In this subsection, we recall some important isomorphisms between the complex Clifford
algebra (see definition below) and other vector spaces. We point out that the isomorphism
(7) below slightly differs from the equivalent one in[12] or [2], since we want here to keep
track of the “Clifford action” in a more suitable way for our setting.

We fix a positive integern, and denote by “can” the standard Euclidean inner product
of R

n. Throughout this paper, unless explicitly mentioned, all the isomorphisms will be
denoted by the identity map.

Let Cln (resp. Cln) be the complex (resp. real) Clifford algebra of(Rn, can), that is, the
only associative complex (resp. real) algebra with unit generated byR

n with the relation

v · w+ w · v = −2 can(v,w)1

for all vectorsv andw in R
n. Here the product ofCln (resp. Cln), denoted “·”, is called the

Clifford multiplication. We recall the properties ofClnwhich will be important for the future:

• LetΛR
n ⊗ C be the complexified exterior algebra ofR

n. Then there exists acanonical
linear isomorphism[18]

Cln→ ΛR
n ⊗ C, (1)

which maps every element of the formv · ϕ (v ∈ R
n, ϕ ∈ Cln) ontov∧ ϕ− v�ϕ, where

“v�ϕ” stands forv	�ϕ through the musical isomorphismv �→ v	 := can(v, ·) between
R
n and(Rn)∗. We hereby identify through(1) the spaceΛpRn⊗C as a subspace ofCln.
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• The algebraCln is either a complex matrix algebra or the copy of two such ones: there
exists a complex vector spaceΣn of dimension 2[n/2], called thespace of spinors, and
an isomorphism of complex algebras:

Cln ∼=
{

EndC(Σn) if nis even,

EndC(Σn)⊕ EndC(Σn) if n is odd.
(2)

Without loss of generality (see e.g.[18]), we further assume that, whenn is odd, the
isomorphism(2)maps the complex volume element ofCln (see e.g. in[5] for its definition)
onto IdΣn⊕−IdΣn . We defineδn as the isomorphism(2) if n is even, and the composition
of the projection onto the first subalgebra EndC(Σn) with (2) if n is odd. In particular,
for n odd and for everyv in R

n, the isomorphism(2) readsv �→ δn(v) ⊕ −δn(v), see
[18].

• The spaceΣn carries a natural Hermitian inner product “〈·, ·〉” (which we assume to be
complex-linear in thefirst argument) such that, for everyv in R

n and allσ, σ′ in Σn:

〈δn(v)σ, σ′〉 = −〈σ, δn(v)σ′〉. (3)

The property(3) determines the Hermitian inner product “〈·, ·〉” up to a positive scalar
[5].

Define now thespin groupSpinn as

Spinn := {v1 · · · v2k/k ≥ 1, vj ∈ R
n, can(vj, vj) = 1}

and thespin representationto be the restriction ofδn to Spinn. The spin group is a compact
Lie-subgroup of the group of invertible elements inCln which has the following remarkable
properties:

• There exists a two-fold covering Lie-group-homomorphism from Spinn onto the special
orthogonal group SOn, which we denote by “Ad”.

• Denoting also “Ad” the composition of the natural representation of SOn onΛR
n ⊗ C

with Ad, the isomorphism(1) is Spinn-equivariant, i.e., for everyu in Spinn andϕ in
Cln,

u · ϕ · u−1 � Ad(u)ϕ

through(1).
• Every Hermitian inner product “〈·, ·〉” satisfying (3) is Spinn-invariant, i.e., the spin

representation is unitary w.r.t. “〈·, ·〉”.
We now recall two lemmas and discuss their consequences.

Lemma 1. There exists a complex-antilinear automorphism ofΣn commuting with the
spin representation, i.e., for everyu in Spinn, we haveδn(u)◦ = ◦δn(u).

Proof. Although it follows from representation theory (see e.g. p. 21 in[25] or Section 1.7
in [7]), we give here an elementary argument.



N. Ginoux / Journal of Geometry and Physics 52 (2004) 480–498 483

From the classification ofreal Clifford algebras (see[18]), we have:

Cln ∼=




R(2[n/2]) if n ≡ 0 or 6 (8),

R(2[n/2])⊕ R(2[n/2]) if n ≡ 7 (8),

H(2[(n−1)/2]) if n ≡ 2 or 4 (8),

H(2[n−2/2])⊕H(2[n−2/2]) if n ≡ 3 (8),

C(2[n/2]) if n ≡ 1 or 5 (8).

As Cln ∼= Cln ⊗ C, we see that, ifn ≡ 0, 6 or 7 (8), thecomplexrepresentationδn :
Cln → EndC(Σn) admits a real structure, i.e., there exists aC-antilinear and involutive
automorphism ofΣn such that, for every vectorv in R

n (hence for every element inCln),

δn(v)◦ = ◦δn(v).
If n ≡ 2, 3 or 4 (8), there exists a quaternionic structure onΣn, i.e., aC-antilinear auto-
morphism ofΣn satisfying2= −Id and the preceding relation. Ifn ≡ 1 or 5 (8), the real
representation of Cln being already complex, there exists noC-antilinear automorphism of
Σn commuting with the action ofeveryvector ofRn as before. However, the relation we
look for needs only to hold on Spinn and not on Cln. We eliminate the obvious casen = 1.
For n > 1, as Spinn is a subset of Cl0

n := ⊕pevenΛ
p
R
n, and Cl0n identifies with Cln−1

through an algebra-isomorphism which provides the equivalence ofδn−1 (or “double copy”
as in(2)) with (δn)|

Cl0n
(see[18]), we just need to solve the problem forδn−1. But from the

preceding arguments, the representationδn−1 admits a real or quaternionic structure, so that
we again obtain aC-antilinear automorphism of Σn which commutes with(δn)|Spinn

.
To sum up, for everyn ≥ 1, there exists aC-antilinear automorphism of Σn such that,

for everyu in Spinn,

δn(u)◦ = ◦δn(u),
which is the desired property. �

Corollary 1 (see e.g.[9] or p. 244 in[1]). There exists a complex-linear isomorphism

Cln→
{
Σn ⊗Σn if n is even,

Σn ⊗Σn ⊕Σn ⊗Σn if n is odd
(4)

satisfying:

• For everyv in R
n and everyϕ in Cln, the elementv · ϕ is mapped onto{δn(v) ⊗ Id}ϕ

whenn is even(resp. onto{δn(v)⊗ Id ⊕−δn(v)⊗ Id}ϕ whenn is odd).
• The isomorphism(4) is Spinn-equivariant: for everyu in Spinn and everyϕ in Cln,

the elementu · ϕ · u−1 is mapped onto{δn(u) ⊗ δn(u)}ϕ whenn is even(resp. onto
{δn(u)⊗ δn(u)⊕ δn(u)⊗ δn(u)}ϕ whenn is odd).

Proof. The proof obviously follows from the preceding lemma. �

For the next lemma, we recall an explicit description of the space of spinors as a subspace
of the complex Clifford algebra in even dimensions (compare with[5,16,17]). We consider
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R
2n endowed with its natural complex structureJ , so thatR2n = R

n ⊕ J(Rn). Letp± the
two projectors ofR2n ⊗ C defined by

p± := 1
2(Id ∓ iJ),

whereJ is extended as a complex-linear automorphism ofR
2n ⊗ C. The endomorphisms

p+ andp− satisfy the following:p− ◦p+ = p+ ◦p− = 0,p± ◦ J = J ◦p± = ±ip±, and
can(p+(Z), Z′) = can(Z, p−(Z′)) for all Z, Z′ in R

2n ⊗ C.
Let (ej)1≤j≤n be the canonical basis ofR

n. For 1≤ j ≤ n, definezj := p+(ej) and
z̄j := p−(ej). The vectorsz1, . . . , zn, z̄1, . . . , z̄n form the so-calledWitt-basisof R

2n⊗C

associated to the basis(ej)1≤j≤n of R
n. Set

ω̄ := z̄1 · · · z̄n.
From the above properties ofp±, that element ofCl2n is independent of the choice of
the positively oriented orthonormal basis (p.o.n.b.) ofR

n: replacing(ej)1≤j≤n by another
p.o.n.b. ofRn, and taking the associated Witt-basis ofR

2n⊗C, one obtains the same element
ω̄.

For 1≤ p ≤ n, setLp := SpanC{zi1 · · · zip · ω̄,1≤ i1 < · · · < ip ≤ n} andL0 := Cω̄.
Those subspaces ofCl2n do not depend on the choice of a p.o.n.b. ofR

n, in the preceding
sense. It can furthermore be shown that⊕np=0L

p is a left-ideal of dimension 2n in Cl2n,
hence is isomorphic toΣ2n (see[5]). We can then set

Σ2n := n⊕
p=0
Lp.

Note here that dimC(L
p) = Cpn := n!/p!(n − p)!. Through that identification, for each

ψ in Cl2n, the endomorphismδ2n(ψ) is given by the left-Clifford multiplication byψ. For
example (and this will be crucial for the future), the Clifford multiplication by the Kähler
form Ω̃(·, ·) = can(J ·, ·) of (R2n, J) is given by

δ2n(Ω̃) =
n⊕
p=0
i(2p− n)IdLp,

that is,Lp is the eigenspace ofδ2n(Ω̃) for the eigenvaluei(2p− n).
Moreover, a Hermitian inner product satisfying(3) can be defined in the following way:

for any 1≤ i1 < · · · < ip ≤ n and 1≤ j1 < · · · < jq ≤ n, set

〈zi1 · · · zip · ω̄, zj1 · · · zjq · ω̄〉 :=
{

0 if {i1, . . . , ip} �= {j1, . . . , jq},
2[(n+1)/2] otherwise.

It can be shown that(3) holds and that this Hermitian inner product does not depend on the
choice of a p.o.n.b. ofRn.

We furthermore define Spin′n to be the spin group of(JR
n, can), i.e.,

Spin′n := {w1 · · ·w2k/k ≥ 1, wj ∈ JR
n, can(wj,wj) = 1} ⊂ Cl2n.

From the universal property of Clifford algebras[18], the linear isometryJ : R
n → JR

n

induces a Lie-group-isomorphism̃J : Spinn → Spin′n. We then setδ′n := δn|Spinn
◦ (J̃)−1 :

Spin′n→ AutC(Σn). Note that elements of Spinn and Spin′n obviously commute.
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Lemma 2. ConsiderCln as canonically embedded inCl2n. Then the map

Cln→ Σ2n, ϕ �→ ϕ · ω̄ (5)

is a complex-linear isomorphism satisfying:

• For everyv in R
n and everyϕ in Cln, the elementv · ϕ is mapped ontov · ϕ · ω̄.

• For everyw in JR
n and everyϕ inΛpRn⊗C, the element(−1)p+1iϕ · J(w) is mapped

ontow · ϕ · ω̄.

In particular, the isomorphism(5) is Spinn-equivariant w.r.t. the“diagonal immersion”

Spinn→ Spin2n, u �→ u · J̃ (u), (6)

that is, for everyu in Spinn andϕ in Cln, the elementu ·ϕ ·u−1 is mapped ontou · J̃ (u) ·ϕ ·ω̄.

Proof. Since the linear map(5) is obviously surjective (for each 1≤ p ≤ n and each
1 ≤ i1 < · · · < ip ≤ n, the elementei1 · · · eip of Cln is mapped ontozi1 · . . . zip · ω̄), and
both spaces have the same dimension, it is a linear isomorphism. Furthermore,(5) maps the
subspaceΛpRn ⊗ C ontoLp.

The first property is trivial. On the other hand, for everyw in JR
n andϕ in ΛpRn ⊗ C,

(−1)p+1iϕ · J(w) · ω̄ = (−1)pϕ · (−ip+(J(w)) · ω̄)
= (−1)pϕ · p+(w) · ω̄ = (−1)pϕ · w · ω̄ = w · ϕ · ω̄,

hence the second point holds. As a consequence, for allw1,w2 in JR
n with can(w1, w1) =

can(w2, w2) = 1 and everyϕ in Lp, the preimage through(5) of w1 ·w2 · ϕ · ω̄ is given by

(−1)pi{w2 · ϕ} · J(w1) · ω̄ = (−1)p(−1)p+1i2ϕ · J(w2) · J(w1) · ω̄
= ϕ · J(w2) · J(w1) · ω̄,

i.e., is equal toϕ·J(w2)·J(w1). Note that it does no longer depend onp. SinceJ(w2)·J(w1) =
(J̃)−1(w2 · w1) = (J̃)−1{(w1 · w2)

−1}, we obtain

ϕ · (J̃)−1(u′−1)
(5)�u′ · ϕ · ω̄

for everyu′ in Spin′n and everyϕ in Cln, from which follows the last statement. �

Corollary 2. There exists a complex-linear isomorphism

Σ2n→
{
Σn ⊗Σn if n is even,

Σn ⊗Σn ⊕Σn ⊗Σn if n isodd,
(7)

satisfying:

• For everyv in R
n andϕ in Σ2n, the elementδ2n(v)ϕ is mapped onto{δn(v)⊗ Id}ϕ if n

is even(resp. onto{δn(v)⊗ Id ⊕−δn(v)⊗ Id}ϕ if n is odd).
• For everyw in JR

n and ϕ in Lp, the elementδ2n(w)ϕ is mapped onto(−1)pi{Id ⊗
δn(J(w))}ϕ if n is even(resp. onto(−1)pi{Id ⊗ δn(J(w)) ⊕ −Id ⊗ δn(J(w))}ϕ if n is
odd).
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• If Σn ⊗Σn is endowed with the tensor product of a Hermitian inner product satisfying
(3) with itself, then the isomorphism(7) is unitary.

In particular, the inverse of(7) isSpinn×Spin′n-equivariant w.r.t. the group-homomorphism

Spinn × Spin′n→ Spin2n, (u, u′) �→ u · u′,
that is, for every(u, u′) in Spinn × Spin′n and everyϕ in Σ2n, the isomorphism(7) maps
the elementδ2n(u · u′)ϕ onto{δn(u)⊗ δ′n(u′)}ϕ if n is even(resp. onto{δn(u)⊗ δ′n(u′)⊕
δn(u)⊗ δ′n(u′)}ϕ if n is odd).

Proof. The isomorphism(7) is obtained bringing together the isomorphisms(4) and (5),
and straightforward satisfies the first property. The second one follows fromLemma 2and
from

ϕ · v(4)=
{−{Id ⊗ δn(v)}ϕ if n iseven
−{Id ⊗ δn(v)⊕−Id ⊗ δn(v)}ϕ if n is odd.

for everyv in R
n and everyϕ in Cln. The third one comes from the fact that the squared-norm

of the image ofei1 · · · eip ·ω̄ is 2[(n+1)/2] (remember that(ej)1≤j≤n stands here for the canon-
ical basis ofRn). The last statement follows from the two first ones, since for all vectorsw1
andw2 in JR

n, the isomorphism(7)mapsδ2n(w1)δ2n(w2) onto Id⊗{δn(J(w1))δn(J(w2))}
if n is even (resp. onto Id⊗ {δn(J(w1))δn(J(w2))} ⊕ Id ⊗ {δn(J(w1))δn(J(w2))} if n is
odd). �

Corollary 3. There exists a complex-linear isomorphism

Σ2n→ ΛR
n ⊗ C (8)

satisfying:

• For everyv in R
n andϕ in Σ2n, the elementδ2n(v)ϕ is mapped ontov ∧ ϕ − v�ϕ.

• For everyw in JR
n andϕ in Σ2n, the elementδ2n(w)ϕ is mapped onto−i{J(w) ∧ ϕ +

J(w)�ϕ}.
In particular, the isomorphism(8) is Spinn-equivariant w.r.t.(6), i.e., for everyu in Spinn
and everyϕ in Σ2n, the isomorphism(8) mapsu · J̃ (u) · ϕ ontoAd(u)ϕ.

Proof. As before, the isomorphism(8) is obtained from the isomorphisms(1) and (5), and
satisfies the first property. The second statement comes from the fact that, for every vector
v in R

n and everyϕ in ΛpRn ⊗ C, the elementϕ · v corresponds through(1) to the form
(−1)p{v ∧ ϕ + v�ϕ} (see[18]). The last one straightforward follows from the preliminary
remarks andLemma 2. �

2.2. Spinor bundles on a Lagrangian submanifold

We now deduce from the first subsection isomorphisms between spinor bundles on a
submanifold. Since we shall need those isomorphisms in the setting of Lagrangian subman-
ifolds (see definition below), we restrict to the case of a Riemannian submanifold(Mn, g) of
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dimensionn immersed in a Riemannian manifold(M̃2n, g) of (real) dimension 2n. We shall
always use the following notations:II will be the bundle-valued second fundamental form of
the immersion,H its mean-curvature vector field (in our convention,H := 1/n tr(II)), and
∇M (resp.∇̃) will be the Levi-Cività connection of(M, g) (resp. of(M̃, g)). The induced
covariant derivative on the exterior bundle will be denoted analogously.

We assumeM̃ to be spin, and fix a spin structure Spin(T M̃) → SO(T M̃). As it is
in general impossible to induce a spin structure fromM̃ to M (compare with the case
of an oriented hypersurface[2,18,22]), we assumeM to be spin as well and fix a spin
structure Spin(TM) → SO(TM) onM. Then the normal bundleNM of M in M̃ is spin,
and carries an induced spin structure, Spin(NM) → SO(NM), for which there exists a
principal-bundle-homomorphism Spin(TM) ×M Spin(NM) → Spin(T M̃)|M making the
following diagram commutative[21]:

LetΣM (resp.ΣN,ΣM̃) be the spinor bundle ofTM (resp. ofNM,TM̃), i.e., the complex
vector bundle associated to the spin bundle through the spin representation. There are three
fundamental objects on the spinor bundle:

• The isomorphism(2) being obviously Spinn-equivariant induces a bilinear map, called
theClifford multiplication

TM×M ΣM → ΣM, (X, ϕ) �→ γM(X)ϕ

satisfying

γM(X)γM(Y)+ γM(Y)γM(X) = −2g(X, Y)IdΣM

for all vectorsX andY in TM. The same holds forΣN andΣM̃; we denote byX · ϕ :=
γM̃(X)ϕ the Clifford multiplication by a vectorX on an elementϕ of ΣM̃.

• The spinor bundleΣM also inherits from the space of spinors a Hermitian inner product
“ 〈·, ·〉M” satisfying

〈γM(X)ϕ,ψ〉M = −〈ϕ, γM(X)ψ〉M
for everyX in TM and allϕ, ψ in ΣM. The same property holds forΣN and forΣM̃,
for which such a Hermitian inner product will be denoted by “〈·, ·〉”.

• The Levi-Cività connection of(TM, g) induces a covariant derivative∇ΣM onΣM [5,18].
This covariant derivative is metric w.r.t. “〈·, ·〉M” and satisfies the Leibniz rule w.r.t. the
Clifford multiplication. We denote by∇ΣN (resp.∇̃) that covariant derivative onΣN
(resp. onΣM̃).
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We now compare the different spinor bundles on the submanifoldM. We need further
notations in that purpose. For a tangent vectorX toM and an elementφ ofΣM ⊗ΣN if n
is even (resp. ofΣM ⊗ΣN ⊕ΣM ⊗ΣN if n is odd), we define “X·M φ” to be∣∣∣∣∣ {γM(X)⊗ IdΣN}φ if n is even

{γM(X)⊗ IdΣN ⊕−γM(X)⊗ IdΣN}φ if n is odd.

We furthermore set

∇ :=
∣∣∣∣∣∇
ΣM⊗ΣN if morn is even

∇ΣM⊗ΣN ⊕∇ΣM⊗ΣN otherwise.

Note that∇ isnotthe natural covariant derivative ofΣM, since from its definition it depends
on the covariant derivative of the normal bundle.

From the above homomorphism between spin bundles and the preceding subsection, we
have the following:

Lemma 3. There exists a complex-vector bundle isomorphism

ΣM̃|M →
{
ΣM ⊗ΣN if n is even,

ΣM ⊗ΣN ⊕ΣM ⊗ΣN if n is odd
(9)

satisfying:

• For every tangent vector fieldX onM and every sectionφ ofΣM̃|M , the isomorphism
(9) maps the sectionX · φ ontoX·M φ.

• For every tangent vector fieldX onM and every sectionφ ofΣM̃|M ,

∇̃Xφ = ∇Xφ + 1

2

n∑
j=1

ej · II(X, ej) · φ

in any local o.n.b.(ej)1≤j≤n of TM.

Furthermore, the isomorphism(9) can be assumed to be unitary.

Proof. From its equivariance under the action of Spinn × Spin′n, the isomorphism(7)
straightforward induces the isomorphism(9) between the vector bundles. The first property
is just the translation of that of(7) on vector bundles. The second one is deduced in a quite
analogous way as in[12] from the three following points: use the local expressions of the
covariant derivatives̃∇ and∇ [5,18], apply the Gauß-Weingarten formula onTM̃|M , and
use the correspondence through(9) between the Clifford multiplications by 2-forms, that
is: for all vectorsX1 andX2 in TM,

X1 ·X2 ·
(9)�X1 ·

M
X2 ·
M
,

and for all vectorsν1, ν2 in NM,

ν1 · ν2 ·
(9)� Id ⊗ γN(ν1)γN(ν2)(⊕ Id ⊗ γN(ν1)γN(ν2)),
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where the parentheses stand for the case “n odd” (see previous subsection). The last remark
is also a direct consequence ofCorollary 2. �

In this setup, the most natural Dirac operators that can be introduced on the manifoldM

are the so-calledtwisted-Dirac operatorDΣNM [18] and theDirac-Witten operatorD̂ [26],
respectively defined in a local o.n.b(ej)1≤j≤m of TM by

DΣNM :=
m∑
j=1

ej ·
M
∇ej , D̂ :=

m∑
j=1

ej · ∇̃ej .

Both operators, which act on the sections ofΣM̃|M , are elliptic, and fromLemma 3are
related by

D̂ = DΣNM − 1
2mH.

Furthermore, the operatorDΣNM is formally self-adjoint (butD̂ is not).
We now specialize to submanifolds with particular geometric structures. It is first im-

portant to point out that the spinor bundleΣN is in generalnot isomorphic toΣM; this
may hold even if there exists an isomorphism betweenTM andNM, such as for Lagrangian
submanifolds in Kählerian manifolds (see the examples in Notes 1). We therefore recall the
notion of isomorphism between spin structures:

Definition 1. LetEandF be two spin vector bundles on a manifoldM, with fixed spin struc-
tures Spin(E)→ SO(E) and Spin(F)→ SO(F). An isomorphismbetween the spin struc-

tures ofE andF is given by a pair of principal-bundle isomorphisms Spin(E) −→̃f Spin(F)
and SO(E) −→f SO(F) such that the following diagram commutes:

If two vector bundles have isomorphic spin structures, they obviously have isomorphic
spinor bundles as well. Hence we give the following

Corollary 4. Assume that there exists an orientation-preserving isometryf from TM to NM
which induces an isomorphism(f̃ , f) of the respective spin structures. Then there exists a
complex-vector bundle isomorphism

ΣM̃|M → ΛTM⊗ C (10)

satisfying:

• For every tangent vectorX toM and everyφ inΣM̃|M , the elementX ·φ is mapped onto
X ∧ φ −X�φ.
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• For every vectorν in NM and everyφ in ΣM̃|M , the elementν · φ is mapped onto
i{f−1(ν) ∧ φ + f−1(ν)�φ}.

• If furthermoref is parallel w.r.t. the respective connections on TM and NM, then for
every tangent vector fieldX to M and every sectionφ of ΣM̃|M , the element∇Xφ is
mapped onto∇MX φ.

Proof. The existence of(10) is a direct consequence ofCorollary 3and the fact that the
spin structure ofTM̃|M reduces viaf to the spin structure ofTM. The first property comes
straigthforward. For the second one, it is to be noted that the automorphism

J :=
(

0 −f−1

f 0

)

of TM̃|M is described through the Spinn-reduction as

Spin(TM)×Ad R
2n→ Spin(TM)×Ad R

2n, [s̃, v] �→ [s̃, J(v)].

The last statement follows from a short computation using the properties of compatibility
between∇ and the other objects onΣM ⊗ΣM(⊕ΣM ⊗ΣM). �

Remark that, from the preceding proof, the existence of an orientation-preserving isom-
etry f : TM → NM is equivalent to the existence of an almost-Hermitian structureJ on
TM̃|M mappingTM onto NM. Let Ω̃ then denote the Kähler form of(T M̃|M , g, J), i.e.,
Ω̃(X, Y) := g(J(X), Y) for all X andY in TM̃|M . Under the hypotheses ofCorollary 4, the
following holds: for every 0≤ p ≤ n andφ in ΛpTM⊗ C,

Ω̃ · φ = i(2p− n)φ
through(10). This also follows from the properties of(5), see previous subsection.

The existence of an almost-complex structure onTM̃|M is precisely the case we shall be
interested in, since we shall consider submanifolds of Kählerian manifolds. We now recall
the following.

Definition 2. A submanifoldMn of a Kählerian manifold(M̃2n, g, J) is calledLagrangian
if and only if

J(TM) = NM,

i.e., the complex structure identifies the tangent and normal bundles of the submanifold.

For a Lagrangian submanifold in a Kählerian manifold, the complex structureJ obviously
preserves the metric and the orientation ofTM̃|M , and is parallel.

Corollary 5. Let(Mn, g) be a spin Lagrangian submanifold immersed in a Kählerian spin
manifold(M̃2n, g, J). Let the normal bundle NM carry the induced spin structure. Assume
that the complex structureJ induces an isomorphism between the spin structures of TM
and NM. Then there exists a complex-vector bundle isomorphism

ΣM̃|M → ΛTM⊗ C
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satisfying:

• For every tangent vectorX toM and everyφ inΣM̃|M , the elementX ·φ is mapped onto
X ∧ φ −X�φ.

• For every vectorν in NM and everyφ in ΣM̃|M , the elementν · φ is mapped onto
−i{J(ν) ∧ φ + J(ν)�φ}.

• For every tangent vector fieldX toM and every sectionφ ofΣM̃|M , the element∇Xφ is
mapped onto∇MX φ.

In particular, for each0 ≤ p ≤ n, the subspaceΛpTM⊗C is the eigenspace associated to
the eigenvaluei(2p − n) of the action of the Kähler form̃Ω of (M̃2n, g, J). Furthermore,
for every sectionφ ofΣM̃|M ,

DΣNM φ = (d + δ)φ and D̂φ = (d + δ)φ + im

2
{J(H) ∧ φ + J(H)�φ},

whered (resp.δ) denotes the exterior differential(resp. codifferential).

Proof. The only statement to be proved is the last one, for which it suffices to know that,
for any local o.n.b.(ej)1≤j≤n of TM,

d =
n∑
j=1

ej ∧ ∇Mej and δ = −
n∑
j=1

ej�∇Mej . �

Notes 1.

(1) In the same way as above, one can give a “bundle-version” ofCorollary 1: let E be
any arbitrary Riemannian spin vector bundle on a spin manifoldM such that there
exists an isomorphism fromTM to E, preserving the metric, the orientationand the
spin structure. Then there exists a complex-vector bundle isomorphism between the
Clifford bundle and the tensor productΣM⊗ΣE (or double copy), mappingX ·φ onto
X·M φ for everyX in TM andφ in the Clifford bundle; if furthermore the isomorphism
from TM to E is parallel w.r.t. the covariant derivatives onTM andE, then∇MX φ is
mapped onto∇ΣM⊗ΣEX φ (or double copy).

(2) We proved inCorollary 5that, under a compatibility condition between the complex
structure and the spin structures ofTM and NM, the twisted-Dirac operator can be
identified withd+δ (the so-calledEuler operator), that is, a square-root of the Hodge–de
Rham Laplaciandδ+δd. This compatibility hypothesis is important, since otherwise the
conclusions ofCorollary 5may fail as can be seen on the following example. Consider
the unit circleM := S1, canonically embedded in the complex lineM̃ := C. This
embedding is isometric and Lagrangian. Furthermore,S1 carries two spin structures,
a trivial one and a non-trivial one. If one chooses the trivial (resp. non-trivial) spin
structure on the tangent bundle ofS1, then the induced spin structure on the normal
bundle is non-trivial (resp. trivial)[3,7]. Therefore, the complex structure does not even
preserve the spin bundles overS1. Furthermore, the induced twisted-Dirac operator is in
both cases the fundamental Dirac operator ofS1 for the non-trivial spin structure. Since
this operator has trivial kernel, it cannot coincide with a square-root of the Hodge–de
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Rham Laplacian. One therefore sees that the hypothesis of compatibility ofCorollary 5
between the complex and the spin structures is necessary.

3. An upper eigenvalue bound for the twisted-Dirac operator on a Lagrangian
submanifold

In this section, we consider a compact Lagrangian spin submanifold(Mn, g) in a Kähle-
rian spin manifold(M̃2n, g, J). Since the operatorDΣNM is elliptic and formally self-adjoint,
it has a discrete spectrum; we then denote byλk (k ∈ N \ {0}) its eigenvalues, counted with
their multiplicities, assuming that|λk+1| ≥ |λk| for everyk ≥ 1.

We are interested in the following question: how can one control the smallest eigenvalues
of the twisted-Dirac operator in terms of extrinsic geometric invariants? For submanifolds
of certain real space-forms, it was proved by Bär in[2] and the author in[10,11] that the
ambient curvature together with either theL2 or theL∞ norm of the mean curvature appear
as the best candidates in that purpose. Those results were obtained considering restrictions
to the submanifold of particular spinor fields on the ambient manifold, calledKilling spinors
(see[4] about those). As non Ricci-flat Kählerian spin manifolds of (real) dimension greater
than 2 do not admit such spinor fields[14,19,20], it comes as a natural question whether such
kind of estimates could still hold in our context. We give an affirmative and sharp answer to
that problem, using the notion ofKählerian Killing spinorsintroduced by K.-D. Kirchberg
in [17] and O. Hijazi in[15]. Remember that, for a complex constantα, anα-Kählerian
Killing spinor on the Kählerian spin manifold(M̃2n, g, J) is a couple of sections(ψ, φ) of
ΣM̃ satisfying, for every tangent vector fieldZ on M̃,

∇̃Zψ + αp−(Z) · φ = 0, ∇̃Zφ + αp+(Z) · ψ = 0,

wherep±(Z) := (1/2)(Z ∓ iJ(Z)). Whenα = 0, anα-Kählerian Killing spinor is just
a pair of parallel spinor fields. As for Killing spinors, the presence of non-zero Kählerian
Killing spinors yields strong conditions on the geometry ofM̃ (see[15,17]): if α �= 0, the
complex dimensionn of M̃ has to be odd, the manifold(M̃, g, J) has to be Einstein with
scalar curvaturen(n+ 1)α2 (thereforeα must be either real or purely imaginary), and the
sectionsψ andφ have to lie in particular eigenspaces of the Clifford action of the Kähler
form Ω̃ of (M̃, g, J):

Ω̃ · ψ = −iψ, Ω̃ · φ = iφ
(remember that, in our convention,Ω̃(X, Y) := g(J(X), Y) for all vectorsX andY in TM̃).
For example, the odd-complex-dimensional projective spaceCP2k+1 is a spin manifold
carrying 1-Kählerian Killing spinors[16].

3.1. Main result

From here on, we denote byK(α) the space ofα-Kählerian Killing spinors on(M̃, g, J)
(note that, ifα �= 0, thenK(α) ∩K(−α) = {0}). Manifolds carrying a non-zeroK(α) have
been completely characterized by Moroianu in[23] whenα is a non-zero real number. The
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classification of spin Kählerian manifolds admitting a non-zeroK(α)with purely imaginary
α is not known completely, but partial results have been obtained by Kirchberg in[17] and
Herzlich in[13]. We prove the following:

Theorem 1. Let (Mn, g) be a Lagrangian spin submanifold of a Kählerian spin manifold
(M̃2n, g, J). Let the normal bundle ofM in M̃ carry the induced spin structure, andH be
the mean curvature vector field ofM in M̃.

Assume that, for a given non-zero complex constantα, the dimension ofK(α) isN ≥ 1.
Then the following holds:

(1) The2N th eigenvalueλ2N of the twisted-Dirac operatorDΣNM satisfies

(λ2N)
2 ≤ 1

4(n+ 1)2α2 + 1
4n

2||H ||2∞. (11)

(2) If furthermoreα is a non-zero real number, theNth eigenvalueλN satisfies

(λN)
2 ≤ (n+ 1)2α2

4
+ n2

4Vol(M)

∫
M

|H |2vg. (12)

Proof. LetK(n−1)/2 (resp.K(n+1)/2) be the (pointwise) orthogonal projection ofK(α) onto
the−i- (resp.i-) eigenspace of the Clifford action of̃Ω, that is,

K(n−1)/2 := {ψ ∈ Γ(ΣM̃)/Ω̃ · ψ = −iψ and∃φ ∈ Γ(ΣM̃)/(ψ, φ) ∈ K(α)},
K(n+1)/2 := {φ ∈ Γ(ΣM̃)/Ω̃ · φ = iφ and∃ψ ∈ Γ(ΣM̃)/(ψ, φ) ∈ K(α)}.

Since, from the hypotheses,α �= 0, the orthogonal projectionsK(α) → K(n±1)/2 are
injective. We therefore have dimC(K(n±1)/2) = dimC(K(n±1)/2) = N. We then give an
upper bound of the Rayleigh-quotient

Q((DΣNM )
2, ϕ) :=

∫
M
〈(DΣNM )2ϕ, ϕ〉vg∫
M
〈ϕ, ϕ〉vg

for ϕ ∈ K(n−1)/2 ⊕K(n+1)/2, ϕ �= 0, and apply the Min-Max principle.
Let (ψ, φ) be a non-zeroα-Kählerian Killing spinor as above oñM. To obtain(DΣNM )

2ψ

or (DΣNM )
2φ, we first evaluatêD2 onψ or φ, then use the following relation ([10], Lemma

4.1): for every sectionϕ of ΣM̃|M and in every local orthonormal basis (o.n.b.)(ej)1≤j≤n
of TM,

(DΣNM )
2ϕ = D̂2ϕ + n

2|H |2
4
ϕ + n

2

n∑
j=1

ej · ∇NejH · ϕ, (13)

where∇NH denotes the normal covariant derivative ofH .
Let us fix a local o.n.b.(ej)1≤j≤n of TM. From the hypotheses,

D̂ψ =
n∑
j=1

ej · ∇̃ejψ = −α
n∑
j=1

ej · p−(ej) · φ.
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For every vectorX onTM̃, we haveg(p−(X), p−(X)) = 0 and thereforep−(X) ·p−(X) ·
ϕ = 0 for everyϕ in ΣM̃|M . Hence

D̂ψ = −α
n∑
j=1

p+(ej) · p−(ej) · φ.

But, sinceM is Lagrangian inM̃, the complex vectorsZj := p+(ej) andZ̄j := p−(ej)
(1 ≤ j ≤ n) form a Witt-basis forTM̃ ⊗ C. Now remember the expression of the Kähler
form Ω̃ of (M̃, g, J) in that basis:

Ω̃ = −2i
n∑
j=1

Zj ∧ Z̄j.

We deduce from that identity that

D̂ψ = −α
n∑
j=1

(Zj ∧ Z̄j) · φ + α
n∑
j=1

g(Zj, Z̄j)φ = − iα
2
Ω̃ · φ + nα

2
φ = (n+ 1)α

2
φ,

sinceΩ̃ · φ = iφ. A similar computation gives

D̂φ = −α
n∑
j=1

p−(ej) · p+(ej) · ψ = −α
n∑
j=1

(Z̄j ∧ Zj) · ψ + α
n∑
j=1

g(Z̄j, Zj)ψ

= iα
2
Ω̃ · ψ + nα

2
ψ = (n+ 1)α

2
ψ,

sinceΩ̃·ψ = −iψ. We therefore obtain:̂D2ψ = (n+1)2α2/4ψ andD̂2φ = (n+1)2α2/4φ,
i.e.,

(DΣNM )
2ϕ = (n+ 1)2α2

4
ϕ + n

2|H |2
4
ϕ + n

2

n∑
j=1

ej · ∇NejH · ϕ (14)

for ϕ := ψ or φ, hence for everyϕ ∈ K(n−1)/2 ⊕ K(n+1)/2. Taking the Hermitian inner
product of(14)with ϕ and integrating lead to

Q((DΣNM )
2, ϕ) = (n+ 1)2α2

4
+ n

2
∫
M
|H |2〈ϕ, ϕ〉vg

4
∫
M
〈ϕ, ϕ〉vg . (15)

Here we recall that, as the operatorDΣNM is self-adjoint, we only keep the real parts when
taking the Hermitian inner product of both members of(14) with ϕ. That is why the term
involving∇NH does not give any contribution to(15).

We thereby obtain

Q((DΣNM )
2, ϕ) ≤ 1

4(n+ 1)2α2 + 1
4n

2||H ||2∞
for everyϕ ∈ K(n−1)/2 ⊕K(n+1)/2. As the spaceK(n−1)/2 ⊕K(n+1)/2 is 2N-dimensional,
the first statement straightforward follows from the Min-Max principle.
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To conclude the second one, one just has to remember that, if furthermoreα is real, then
the length-function ofψ + φ is constant onM̃ (see[16]), hence onM. Summing up the
identities(14) for ϕ := ψ andϕ := φ and integrating againstψ + φ, one straightforward
obtains the desired integral upper bound, but this time for theNth eigenvalue only since
K(α) isN-dimensional. �

Note 1. If α = 0, that is, if the ambient manifold̃M admits non-trivial parallel spinors,
then for every non-zero parallel spinorϕ onM̃, we haveD̂ϕ = 0; it then follows from(13))
that

Q((DΣNM )
2, ϕ) = n2

4Vol(M)

∫
M

|H |2vg,

from which we directly obtain

(λN)
2 ≤ n2

4Vol(M)

∫
M

|H |2vg.

That estimate, which was proved by Bär in[2], could be included inTheorem 1as the
particular caseα = 0 of (12). We however point out that, for ambient manifolds carrying
parallel spinors, we do not obtain any further information on the spectrum ofDΣNM in
presence of a Kähler structure onM̃.

Corollary 6. Under the hypotheses ofTheorem 1, assume furthermore that the complex
structureJ induces an isomorphism between the spin structures of TM and NM. LetH be
the mean curvature vector field ofM in M̃. Then the following holds:

(1) The2N smallest eigenvalues(counted with their multiplicities)λof the Hodge–de Rham
Laplacian onΩ(n−1)/2(M)⊕Ω(n+1)/2(M) satisfy

λ ≤ 1
4(n+ 1)2α2 + 1

4n
2||H ||2∞.

(2) If furthermoreα is a non-zero real number, theN smallest eigenvaluesλ satisfy

λ ≤ (n+ 1)2α2

4
+ n2

4Vol(M)

∫
M

|H |2vg.

If moreoverM is minimal in M̃ (i.e., if H = 0), then the same result hold for the
N (resp.[(N + 1)/2]) smallest eigenvalues of the Hodge–de Rham Laplacian on the
space of closed(n+ 1)/2-forms.

Proof. FromCorollary 5, if J identifies the spin structures ofTM andNM, then(DΣNM )
2 =

dδ + δd. Furthermore, the isomorphism(10) identifies the eigenspace associated to the
eigenvaluei(2p− n) of the Clifford action ofΩ̃ withΛpTM⊗C; since, under that action,
the spinor fieldφ (resp.ψ) is eigen for the eigenvaluei (resp.−i), it is a (n + 1)/2-form
(resp. a(n − 1)/2-form) onM. Hence the first statement holds. If moreoverH = 0, then
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D̂ = DΣNM = d + δ. From the equalitieŝDψ = ((n+ 1)α/2)φ andD̂φ = ((n+ 1)α/2)ψ,
we then deduce that∣∣∣∣∣ dψ =

(n+ 1)α

2
φ

δψ = 0
and

∣∣∣∣∣
dφ = 0

δφ = (n+ 1)α

2
ψ,

i.e.,ψ is coclosed andφ is closed. As the spectrum of the(n− 1)/2-Laplacian on coclosed
forms coincides with that of the(n+ 1)/2-Laplacian on closed forms (use the Hodge star
operator), we obtain the second property. �

3.2. Examples

For an odd integern ≥ 3, consider the round sphereSn (of constant sectional curvature
1) of dimensionn as canonically embedded in the 2n+1-dimensional round sphereS2n+1.
That embedding is isometric, totally geodesic, and the canonical complex structure ofR

2n+2

maps the tangent bundle ofSn into the horizontal spaceH defined, for eachz in S2n+1 as

Hz := {Rz⊕ RJz}⊥ ⊂ TzS2n+1

with the following property:

H|Sn = TSn⊕
⊥
J(TSn).

Let thenCPn be the complex projective space of complex dimensionn. Composing the
Hopf fibrationS2n+1 → CPn with the above embedding yields an immersion

Sn→ CPn (16)

satisfying the following: it is isometric (the Hopf fibration induces an isometry fromH onto
TCPn), totally geodesic (the Hopf fibration maps horizontal geodesics onto geodesics) and
Lagrangian (the Hopf fibration is “holomorphic” w.r.t. the complex structures ofH and
CPn). Furthermore, ifn is odd, the manifoldCPn is spin, has a unique spin structure since it
is simply-connected[18], and carries a 2C(n+1)/2

n -dimensional space of 1-Kählerian Killing
spinors[16] (remember thatCpn := n!/p!(n− p)!). The round sphereSn is also spin, and
for the same reason has a unique spin structure; more generally, every spin vector bundle
onSn has a unique spin structure, that is, two spin structures on a vector bundle onSn will
always be isomorphic.

Consider then the (canonical) spin structure ofTSn and the induced one on the normal
bundle ofSn in CPn w.r.t. (16); then the complex structure ofCPn will necessarily induce
an isomorphism between the spin structures of the tangent and normal bundles ofSn. Hence
we obtain fromCorollary 6the existence of the following upper bound for the 2C(n+1)/2

n

smallest eigenvaluesλ of the Hodge–de Rham Laplacian on the closed(n+ 1)/2-forms:

λ ≤ 1
4(n+ 1)2.

That estimate is sharp: indeed, for 1≤ p ≤ n − 1, the spectrum of the Hodge–de Rham
Laplacian on the closedp-forms onSn is [8]

{(k + p)(n− p+ k + 1)/k ∈ N},
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and the multiplicity of the first eigenvalue (k = 0) isCpn+1. But, forp := (n + 1)/2, we

have 2C(n+1)/2
n = C(n−1)/2

n + C(n+1)/2
n = C(n+1)/2

n+1 , which is precisely the multiplicity of
the first eigenvalue of the Hodge–de Rham Laplacian on the closed(n+ 1)/2-forms.

A further interesting example would be to consider the realn-dimensional projective space
(with n = 4k + 3) in the complex projective spaceCPn. That question, which is linked to
determiningall the Lagrangian submanifolds which satisfy the equality inTheorem 1, will
be considered in a forthcoming work.
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